Nełwork Analysis

Maneesh Agrawala
CS 448B: Visualization
Fall 2018

Announcements

Final project

New visualization research or data analysis

- Pose problem, Implement creative solution
- Design studies/evaluations

Deliverables

- Implementation of solution
- 6-8 page paper in format of conference paper submission
- Project progress presentations

Schedule

- Project proposal: Mon 11/5
- Project progress presentation: 11/12 and 11/14 in class (3-4 min)
- Final poster presentation: 12/5 Location: Lathrop 282
- Final paper: 12/9 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Network Analysis

Diseases

Transportation

http://www.lx97.com/maps/

Characterizing networks

What does it look like?

Topics

Network Analysis

- Centrality / centralization
- Community structure
- Pattern identification
- Models

Centrality

How far apart are things?

Distance: shortest paths

Shortest path (geodesic path)

- The shortest sequence of links connecting two nodes
- Not always unique

A and C are connected by 2 shortest paths

- $A-E-B-C$
- A-E-D-C

Distance: shortest paths

Shortest path from 2 to 3: 1

Distance: shortest paths

Shortest path from 2 to 3 ?

Most important node?

Centrality

Degree centrality (undirected)

Normalized degree centrality

(3)

(2)
(20)

©
(23) $C_{D}(i)=\frac{d(i)}{N-1}$

When is degree not sufficient?

Does not capture
Ability to broker between groups
Likelihood that information originating anywhere in the network reaches you

Betweenness

Assuming nodes communicate using the most direct (shortest) route, how many pairs of nodes have to pass information through target node?

$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$

-

Betweenness - examples
non-normalized:
(0)
A

(0)
E

Bełweenness: definition

$$
C_{B}(i)=\sum_{j, k \neq i, j<k} g_{j k}(i) / g_{j k}
$$

$$
\begin{aligned}
& g_{j k}=\text { the number of geodesics connecting } j k \\
& g_{j k}(i)=\text { the number that node } i \text { is on. }
\end{aligned}
$$

Normalization:

$$
C_{B}^{\prime}(i)=C_{B}(i) /[(n-1)(n-2) / 2]
$$

When are $\mathrm{C}_{\mathrm{d}} \mathrm{C}_{\mathrm{b}}$ not sufficient?

Do not capture

Likelihood that information originating anywhere in the network reaches you

Closeness: definition

Being close to the center of the graph

Closeness Centrality:

$$
C_{c}(i)=\left[\sum_{j=1, j \neq i}^{N} d(i, j)\right]^{-1}
$$

Normalized Closeness Centrality

$$
C_{C}^{\prime}(i)=\left(C_{C}(i)\right) /(N-1)=\frac{N-1}{\sum_{j=1, j, j i}^{N} d(i, j)}
$$

Examples - closeness

Centrality in directed networks

Prestige ~ indegree centrality
Betweenness ~ consider directed shortest paths
Closeness ~ consider nodes from which target node can be reached
Influence range ~ nodes reachable from target node

Straight-forward modifications to equations for non-directed graphs

Characterizing nodes

	Low Degree	Low Closeness	Low Betweenness
High Degree		Node embedded in cluster that is far from the rest of the network	Node's connections are redundant- communication bypasses him/her
High Closeness	Node links to a small number of important/active other nodes.		Many paths likely to be in network; node is near many people, but so are many others
High Betweenness	Node's few ties are crucial for network flow	Rare. Node monopolizes the ties from a small number of people to many others.	

Centralization - how equal

Variation in the centrality scores among the nodes

Freeman's general formula for centralization:

$$
C_{D}=\frac{\sum_{i=1}^{g}\left[C_{D}\left(n^{*}\right)-C_{D}(i)\right]}{[(N-1)(N-2)]}
$$

Examples

(1)

$$
\begin{gathered}
C_{D}=\frac{\sum_{i=1}^{g}\left[C_{D}\left(n^{*}\right)-C_{D}\left(n_{i}\right)\right]}{[(N-1)(N-2)]} \\
C_{D}=\frac{(5-5)+(5-1) \times 5}{(6-1)(6-2)}=1
\end{gathered}
$$

Examples

(1)
(1)

(1)

(1)
(2)

(2)
(1)
$C_{D}=0.167$
(2)
(2)
(3) (2) (3)
(2)
$C_{D}=0.167$

Financial networks

Community Structure

How dense is it?

density $=\mathrm{e} / \mathrm{e}_{\text {max }}$

Max. possible edges:
Directed: $\mathbf{e}_{\max }=\mathrm{n}^{*}(\mathrm{n}-1)$

- Undirected: $\mathbf{e}_{\max }=\mathrm{n}^{*}(\mathrm{n}-1) / 2$

Is everything connected?

Connected Components - Directed

Strongly connected components

- Each node in component can be reached from every other node in component by following directed links
$\square B C D E$
$\square A$
$\square G H$
$\square F$

Weakly connected components
Each node can be reached from every other node by following links in either direction
$-A B C D E$

- GHF

Community finding (clustering)

Hierarchical clustering

Process:

- Calculate affinity weights W for all pairs of vertices
- Start: N disconnected vertices
- Adding edges (one by one) between pairs of clusters in order of decreasing weight (use closest distance to compare clusters)
- Result: nested components

Hierarchical clustering (path counts)

Betweenness clustering

Girvan and Newman 2002 iterative algorithm:

- Compute C_{b} of all edges
- Remove edge i where $C_{b}(i)==\max \left(C_{b}\right)$
- Recalculate betweenness

Clustering coefficient

Local clustering coefficient:
$C_{i}=\frac{\text { number of closed triplets centered on i }}{\text { number of connected triplets centered on } \mathrm{i}}$

Global clustering coefficient:

$$
C_{i}=1 / 3=0.33
$$

$$
C_{G}=\frac{3^{*} \text { number of closed triplets }}{\text { number of connected triplets }} \quad \mathrm{C}_{\mathrm{G}}=3^{*} 1 / 5=0.6
$$

Pattern finding - motifs

Define / search for a particular structure, e.g. complete triads

Motifs can overlap in the network

motif matches

4 node subgraphs

Simulating nełwork models

Small world network

Milgram (1967)

- Mean path length in US social networks

■ ~ 6 hops separate any two people

Small world networks

Watts and Strogatz 1998

- a few random links in an otherwise structured graph make the network a small world

Defining small world phenomenon

Pattern:

- high clustering
- low mean shortest path

Examples

$$
\begin{gathered}
C_{\text {network }} \gg C_{\text {random arph }} \\
l_{\text {network }} \approx \ln (N)
\end{gathered}
$$

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph
- food webs

Power law nełworks

Many real world networks contain hubs: highly connected nodes
Usually the distribution of edges is extremely skewed

Summary

Structural analysis

- Centrality
- Community structure
- Pattern finding
\rightarrow Widely applicable across domains

